Identification and Characterization of Acetyl-CoA Carboxylase Gene Cluster in *Streptomyces toxytricini*

Atanas V. Demirev¹, Ji Seon Lee², Bhishma R. Sedai², Ivan G. Ivanov³, and Doo Hyun Nam^{2*}

¹Faculty of Biotechnology, ²Faculty of Pharmacy, Yeungnam University, Gyongsan 712-749, Republic of Korea ³Department of Gene Regulation, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria

(Received April 27, 2009 / Accepted June 18, 2009)

The gene locus for acetyl-CoA carboxylase (ACC) involved in the primary metabolism was identified from the genomic library of *Streptomyces toxytricini* which produces a lipase inhibitor lipstatin. The 7.4 kb cloned gene was comprised of 5 ORFs including *accD1*, *accA1*, *hmgL*, *fadST1*, and *stsF*. In order to confirm the biochemical characteristics of AccA1, the gene was overexpressed in *Escherichia coli* cells, and the recombinant protein was purified through Ni²⁺ affinity chromatography. Because most of the expressed AccA1 was biotinylated by host *E. coli* BirA in the presence of *D*-biotin, the non-biotinylated apo-AccA1 was purified after gene induction without *D*-biotin, followed by exclusion of holo-AccA1 using streptavidin beads. The separated apo-AccA1 was post-translationally biotinylated by *S. toxytricini* biotin apo-protein ligase (BPL) in a time- and enzyme-dependent manner. This result supports that this gene cluster of *S. toxytricini* encodes the functional ACC enzyme subunits to be biotinylated.

Keywords: acetyl-CoA carboxylase, biotin carboxylase, carboxyltransferase, biotin apo-protein ligase, Streptomyces toxytricini

Streptomyces toxytricini produces lipstatin, an irreversible inhibitor of pancreatic lipase (Hochuli *et al.*, 1987; Weibel *et al.*, 1987). Its carbon skeleton having a unique β -lactone group has been reported to be synthesized via Claisen condensation of two fatty acid precursors (Eisenreich *et al.*, 1997, 2003; Goese *et al.*, 2000; Schuhr *et al.*, 2002). It resembles the biosynthesis of a mycolic motif formed by activation of one of the acyl precursors by AccD4 (Portevin *et al.*, 2005) and Claisen condensation by Pks13 condensase, a non-iterative type I polyketide synthase (Portevin *et al.*, 2004).

The attempt to identify *accD4*-like genes in the *S. toxy-tricini* chromosome led to identification of two gene clusters responsible for acyl-CoA carboxylase (ACCase) complexes (Demirev, 2009). One of the them includes *accA1* and *accD1* which encode the α and β subunits of acetyl-CoA carboxylase (ACC), and the other contains *accA3*, *pccB*, and *pccE* which encode α , β , and ε subunits of the propionyl-CoA carboxylase (PCC) complex and *bpl* gene involved in post-translational modification of α subunits.

Two types of ACCase were already characterized in *S. coelicolor*: ACC involved in primary metabolism for fatty acid synthesis and PCC in secondary metabolism for polyketide synthesis (Rodriguez and Gramajo, 1999; Rodriguez *et al.*, 2001; Gago *et al.*, 2006). Thus the *accA1* gene locus is presumed to be responsible for the primary metabolism of *S. toxytricini*, while the *accA3* gene locus responsible for the secondary metabolism (Demirev, 2009).

This paper reports the organization of the *accA1* gene cluster of *S. toxytricini*. Furthermore, *in vitro* biotinylation of AccA1 by *S. toxytricini* biotin apo-protein ligase (BPL) is also described for better understanding of its biochemical property.

Materials and Methods

Microorganisms, vectors, and cultivation

Escherichia coli DH5a was used for gene manipulation and E. coli BL21(DE3) (Novagen, USA) for overexpression of recombinant proteins. These were cultivated on LB medium (1% tryptone, 0.5% yeast extract, 1% NaCl, pH 7.0). If necessary, 100 µg/ml of ampicillin or 50 µg/ml of kanamycin was added to the medium. S. toxytricini NRRL 15443 was maintained in modified MS agar (2% soya bean flour, 2% mannitol, 0.1% glycerol, 0.1% Triton X-100, pH 7.0) or in TSB medium (3% tryptic soy broth) at 29°C for 48 h with aeration. A T&A cloning vector (RBC Bioscience, Taiwan) was employed for cloning the PCR products in E. coli DH5a, and a pET-28a(+) vector (Novagen) was utilized for subcloning and expression of accA1 and bpl genes in E. coli BL21(DE3). A Streptomyces - E. coli shuttle cosmid vector pOJ446 (Bierman et al., 1992) was used to construct the genomic library. Apramycin (50 µg/ml) was supplemented for selection of cosmid DNAs.

Construction of S. toxytricini genomic library

Genomic DNA was isolated from mycelia of *S. toxytricini* using a cetyltrimethylammonium bromide (CTAB) procedure (Kieser *et al.*, 2000) and partially digested with *Sau3AI*. The large-size DNA fragments from the agarose gel were ligated

^{*} To whom correspondence should be addressed.

⁽Tel) 82-53-810-2825; (Fax) 82-53-810-4654

⁽E-mail) dhnam@ynu.ac.kr

with the pOJ446 cosmid digested with *Hpa*I, dephosphorylated and further cleaved by *Bam*HI. The ligated products were packaged *in vitro* by Gigapack III gold packaging extract (Stratagene, USA), and transfected into *E. coli* XL1-Blue MRF' cells.

DNA manipulations

Plasmid and cosmid DNA isolation, DNA cleavage, ligation, and *E. coli* transformation were performed according to standard methods (Sambrook and Russell, 2001).

PCR amplification

Gene amplification was done using an EF-Taq DNA polymerase or Pfu DNA polymerase (Solgent, Korea). For the preparation of the carboxyltransferase (CT) probe, PCR was performed at an annealing temperature of 58°C with the combinations of two sets of forward and reverse primers: ACC-F; 5'-SSHBTTCGACSCSGRVTTCTTCG-3' and ACC-R; 5'-RCSAGSGASGASGAGCASGCSGTGTC-3'. For the amplification of the accA1 gene, forward primer AccA1-F; 5'-CCAGGATCCATGTCCAGCACTGTCCTTGTGGCCAA-3' having BamHI site and reverse primer AccA1-R; 5'-CAAA AGCTTGCGCGCCCGCCTCCTCGTCCTCGTCGG-3' containing HindIII site were designed. The bpl gene was also amplified using forward primer Bpl-F; 5'-CAGCCATATG ACGCCATCCGATGCCCCAGGCGGGGCT-3' having NdeI site and reverse primer Bpl-R; 5'-GGTGCTCGAGCCCGG CAGGCCTCAGGTGCACCACGT-3' containing XhoI site.

Nucleotide and protein sequence analysis

The selected plasmids were sequenced by Solgent (Korea). The location of ORFs was determined using an ORF finder program (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). The ho-mology search of DNA or protein sequences was performed with the BLAST program (http://blast.ncbi.nlm.nih.gov), and the sequence alignment was made using the CLUSTAL W2 program (http://www.ebi.ac.uk/Tools/clustalw2). The nucleotide sequence of the *accA1* locus was deposited under GenBank accession no. FJ618544, and the sequence of the *bpl* gene as a part of the *pccB* gene locus was filed under GenBank accession no. FJ595232.

Gene expression and purification of recombinant proteins

The recombinant E. coli BL21(DE3) cells were grown in LB medium supplemented with kanamycin at 28°C until the OD₆₀₀ reached 0.8. Gene expression was induced by 0.5 mM isopropyl-β-D-thiogalactoside (IPTG) and continued for 4~ 6 h at $27 \sim 28^{\circ}$ C. In the production of AccA1, the cells were cultured with or without 0.2 ng/ml of D-biotin in the LB medium. The harvested cells by centrifugation were resuspended in lysis buffer A (25 mM Tris-HCl; pH 8.0, 300 mM NaCl, 10 mM imidazole, 1 mM phenylmethylsulfonyl fluoride, 0.1% Triton X-100, 0.6% N-lauroylsarcosine, and 10% glycerol) and disrupted by lysozyme treatment (50 µg/ml). The soluble proteins were recovered by centrifugation at 16,000 rpm and clarified through membrane filters (0.45 µm). Then the recombinant His6-tagged proteins were purified by Ni²⁺ affinity column chromatography using NTA chelating agarose CL-6B resin (Peptron Inc., Korea). Selected elution fractions were dialyzed against storage buffer (25 mM Tris; pH 8.0, 100 mM KCl, 10 mM MgCl₂, 1 mM dithiothreitol, and 10% glycerol) and then stored at -70°C. The protein purity was assessed on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by Coomassie Brilliant Blue R-250 staining, and the protein concentrations were determined by Bradford assay.

Confirmation and exclusion of *in vivo* biotinylated holo-AccA1

Streptavidin beads (50% slurry, Novagen) were used for the detection of *in vivo* biotinylated holo-AccA1. The soluble proteins (500 μ l) in *E. coli* lysate were mixed with an equal volume of 50% streptavidin beads and gently agitated at 4°C for 4 h. After short centrifugation, unbound non-biotinylated apo-AccA1 from the supernatant was collected. The precipitated beads were washed gently with cold water, and the biotinylated proteins on the beads were eluted in 500 μ l of 1× sample loading buffer (40 mM Tris; pH 6.8, 0.8% sodium dodecyl sulfate, 10% glycerol, 0.1 M dithio-threitol, 0.01% bromophenol blue). The bound and unbound samples were analyzed on 12% SDS-PAGE, and the proteins were stained with Comassie Brilliant Blue R-250. The supernatant containing apo-AccA1 was aliquoted and kept at -70°C.

In vitro biotinylation of apo-AccA1 and detection of holo-AccA1

The separated apo-AccA1 was biotinylated in vitro by S. toxytricini BPL using a modified procedure described previously (Chapman-Smith et al., 1999). The standard reaction mixtures (100 µl) contained 20 mM Tris-HCl (pH 7.9), 5.5 mM MgCl₂, 100 mM KCl, 5 µM dithiothreitol, 3 mM ATP, 1.25 µM apo-AccA1, and 0.03 or 0.06 mM D-biotin. The concentration of BPL and the reaction time varied according to the requirement of the analysis. Following incubation at 28°C, the reactions were quenched by adding 900 µl of cold acetone, and the samples were frozen at -70°C for at least 1 h. Then, the precipitated proteins were recovered by centrifugation at 16,000 rpm for 20 min, washed with 1 ml of cold acetone, and completely air-dried for 30 min. After being boiled with 20 μ l of 1× sample loading buffer, 15 μ l was run on 12% SDS-PAGE to monitor for the amount of the proteins using Coomassie Brilliant Blue R-250, and the remaining 5 µl was loaded on another SDS-PAGE and transferred to a Protran nitrocellulose membrane (Schleicher & Schuell, Germany) using a Mini-transblot II cell (Bio-Rad, USA). The protein blots were soaked in 1× blocking solution containing 5% skim milk in TBST buffer (0.15 M NaCl, 0.1% Tween-20 in 20 mM Tris-HCl buffer, pH 7.6) for 1 h. The membrane was then immersed in $1 \times$ blocking solution containing horse radish peroxide (HRP)-conjugated streptavidin (1/5,000 diluted) (BD Pharminogen, USA) for 1 h. After washing 3 times with TBST buffer, the biotinylated products were detected by an enhanced chemiluminescence (ECL) kit (Pierce, USA), followed by X-ray film exposure for 1~5 min. The amount of biotinylated products was quantified using molecular imaging software version 4.0 (Eastman Kodak, Germany).

Vol. 47, No. 4

Results and Discussion

Cloning and sequencing of accA1 gene cluster

Based on the structural similarity between lipstatin and mycolic motif, the identification of *pks13* gene (type I *pks*-like gene) in *S. toxytricini* was attempted, but any expected result was not obtained (data not shown). Only a type II *pks* gene was previously identified in this strain (Yoo *et al.*, 2006).

In order to identify *accD4*-like gene in the *S. toxytricini* chromosome, the primers were designed based on the sequences of two conserved regions in the β subunit of acyl-CoA carboxylase (CT) and employed for the amplification of probe from chromosomal DNA. The amplified 530 bp CT probe was radiolabeled for the Southern blot analysis of *S. toxytricini* chromosomal DNA. The band of 7.4 kb from *Bam*HI digestion gave a strong signal (Fig. 1).

After partial digestion with *Sau*3AI, a *S. toxytricini* genomic library was constructed in a pOJ446 cosmid and screened by hybridization with the radiolabeled probe. Three cosmid

Fig. 1. Southern blotting of *S. toxytricini* chromosomal DNA with CT probe (*accD* probe) on a 0.8% agarose gel. Lanes: 1, *Bam*HI-digested *S. toxytricini* chromosomal DNA; 2, *Pst*I-digested DNA; 3, *Hind*III-digested DNA; 4, *Nco*I-digested DNA; 5, *Bgl*II-digested DNA; 6, *Pvu*I-digested DNA; M, 1 kb DNA ladder.

clones having a full-sized 7.4 kb DNA fragment in Southern blotting after *Bam*HI digestion were selected. The 7.4 kb *Bam*HI-digested fragment of the pSTL1 cosmid, one of the positive cosmids, was further digested with *Pst*I to give 3 smaller fragments of 3.6 kb, 2.6 kb, and 1.2 kb, which were subcloned into pGEM-3Zf(+). The nucleotide sequences of these DNA inserts were determined and assembled manually in a single 7.4 kb contig sequence.

Gene organization of *accA1* gene cluster

The gene organization and orientation in the 7.4 kb DNA were analyzed, and the putative function of the gene products was deduced using the BLAST search program (Fig. 2 and Table 1). Five ORFs were found including *accD1*, *accA1*, *hmgL*, *fadST1*, and *stsF*, and all genes except *stsF* were in the same direction under one promoter. The gene organization of the *accA1* locus in *S. toxytricini* is quite similar with that of *S. avermetilis* (NC003155) and *S. coelicolor* (NC003888).

The *accD1* gene encodes a 58.1 kDa protein (538 amino acids, AccD1) named as the β subunit of ACC (CT). AccD1 showed a high degree of similarity with other β subunits of ACCases from streptomycetes including *S. avermitilis*, *S. coelicolor*, *S. clavuligerus*, *S. griseus*, *S. pristinaespiralis*, *S. sviceus*, and *S.* sp. Mg1. The analysis of AccD1 elucidated the presence of GG¹⁴⁹⁻¹⁵⁰ residues binding with the carbonyl group

В	Р		Р		В
		~		\Rightarrow	
S. toxytricini	accD1	accA1	hmgL	fadST1	stsF
S. avermitilis	accD1	accA1	hmgL	fadE4	sidF
S. coelicolor	accD1	fabG	hmgL	acdH	SCO2780

Fig. 2. Gene organization of the accA1 locus of *S. toxytricini* chromosomal DNA. The gene signatures are accD1 for CT, accA1 for BC, hmgL for hydroxymethylglutaryl-CoA lyase, fadST1 for acyl-CoA dehydrogenase, and stsF for ferrichrome ABC transporter. The restriction sites are denoted as B for *Bam*HI and P for *PstI*. The gene organization was compared with a similar locus of *S. avermetilis* (NC003155) and *S. coelicolor* (NC003888).

Table 1. The deduced ORFs in accA1 gene locus by BLAST search

ORF	Nucleotides position	Amino acids	Gene designation	The closest gene from the BLAST search	Homology (%)
Orf1	26-1642	538	accD1	acetyl/propionyl CoA carboxylase, β subunit [Streptomyces sp. Mg1]	95
				acetyl/propionyl CoA carboxylase, β subunit [S. pristinaespiralis ATCC 25486]	93
Orf2	1673-3694	673	accA1	acetyl/propionyl CoA carboxylase, α subunit [Streptomyces sp. Mg1]	85
				acetyl/propionyl CoA carboxylase, a subunit [S. sviceus ATCC 29083]	78
Orf3	3706-4632	308	hmgL	hydroxymethylglutaryl-CoA lyase [Streptomyces sp. Mg1]	88
				putative hydroxymethylglutaryl-CoA lyase [S. griseus subsp. griseus NBRC 13350]	85
Orf4	4640-5800	386	fadST1	acyl-CoA dehydrogenase [Streptomyces sp. Mg1]	94
			5	acyl-CoA dehydrogenase [S. pristinaespiralis ATCC 25486]	92
Orf5	6119-7180	353	stsF	ferrichrome ABC transporter substrate-binding protein [Streptomyces sp. Mg1]	88
0115	0117-/100	555	3131	ferrichrome ABC transporter [S. pristinaespiralis ATCC 25486]	68

476 Demirev et al.

of acyl-CoA and GGSY⁴¹⁷⁻⁴²⁰ residues binding with carboxybiotin (Kiaptapan *et al.*, 2001; Diacovich *et al.*, 2004; Lin *et al.*, 2006).

The *accA1* gene encodes a 74 kDa protein (673 amino acids, AccA1) which is for the α subunit of ACC (biotin carboxylase; BC). The predicted amino acid sequence for AccA1 also exhibited high similarity with other α subunits of ACCases from streptomycetes including *S. avermitilis*, *S. coelicolor*, *S. clavuligerus*, *S. griseus*, *S. pristinaespiralis*, *S. sviceus*, and *S.* sp. Mg1. The multiple sequence alignment of these sequences revealed that the ATP-binding motif (GGGKGG¹⁶²⁻¹⁶⁷) and CO₂ fixation site (RECS²²⁷⁻²³⁰) were present in AccA1. The conserved biotin-binding motif (MKM⁶²⁹⁻⁶³¹) in most biotin carboxylases was also found at the C-terminus (Kimura *et al.*, 2000).

Two other genes, *hmgL* encoding hydroxymethylglutaryl-CoA lyase and *fadST1* encoding acyl-CoA dehydrogenase were found in this gene locus. The FadST1 has been known to be a short chain acyl-CoA dehydrogenase that mediates α,β -dehydrogenation of the corresponding trans-enoyl-CoA. From the sequence analysis, it was assumed that this gene locus is mainly involved in the primary metabolism for the biosynthesis of fatty acids in *S. toxytricini*.

Subcloning, expression, and purification of AccA1 and BPL

The α subunit of ACCase (BC) has the biotin carboxyl carrier protein domain for biotin attachment and the biotin carboxylase domain for CO₂ fixation on the biotin moiety to form carboxybiotin-BC. Subsequently, the β subunit (CT) transfers the carboxyl group from biotin to acyl-CoA (Cronan and Waldrop, 2002).

In order to confirm the biological function of the cloned gene locus, the gene accA1 was amplified and subcloned in a pET-28a(+) expression vector at *Bam*HI-*Hin*dIII sites. On the other hand, the gene *bpl*, identified in another cosmid clone (Demirev, 2009), was also cloned in the same expression vector at *NdeI-XhoI* sites. Two plasmids were transformed into *E. coli* BL21(DE3), and gene induction was

Fig. 3. Production of recombinant AccA1 in LB medium in the absence of *D*-biotin or with supplementation of *D*-biotin. Lanes: C, total cell protein without gene induction; T, total cell protein after gene induction; S, soluble protein fraction after lysis; UB, unbound fraction on the streptavidin beads; B, bound fraction on the streptavidin beads; M, protein marker.

performed with IPTG in LB broth. Both recombinant proteins exhibited significant solubility and subsequently were purified through Ni^{2+} affinity chromatography.

However *D*-biotin supplementation in culture medium caused a complete *in vivo* biotinylation of apo-AccA1 by the host *E. coli* BirA (a biotin-induced repressor protein A). Most of AccA1 was confirmed to be already biotinylated when non-biotinylated proteins (unbound fraction) were separated from the biotinylated ones (bound fraction) on the streptavidin beads (Fig. 3), implying that *D*-biotin induces host BirA production and facilitates the biotinylation of apo-AccA1. In addition, promiscuous activity of BirA capable of biotinylating other small proteins was observed.

In order to obtain non-biotinylated apo-AccA1, the protein was overproduced in LB medium without *D*-biotin (Fig. 3). The SDS-PAGE analysis showed that a small amount of holo-AccA1 was still present and that apo-AccA1 was not efficiently separated from other proteins. For *in vitro* biotinylation of apo-AccA1, the small amount of biotinylated AccA1 was removed by the streptavidin beads (Fig. 4).

In vitro biotinylation of recombinant apo-Acc1 by BPL. The separated apo-AccA1 was subjected to the *in vitro* biotinylation assay as an acceptor protein. After the reaction at 28°C, the biotinylated products were detected on 12% SDS-PAGE by HRP-conjugated streptavidin. The lower reaction temperature was attempted in order to present a culture condition of *S. toxytricini*. The analysis revealed that the biotinylation reaction occurred in a time-dependent manner within 2 h (Fig. 5). There were no positive signals in the control reactions, confirming the successful removal of holo-AccA1. Even though the *in vitro* biotinylation of apo-AccA1 by BPL had highest priority, a prolonged incubation resulted in non-specific biotinylation of other proteins as well, most likely due to the promiscuous activity of BPL (Choi-Rhee and Cronan, 2003; Choi-Rhee *et al.*, 2004).

Fig. 4. Purified recombinant apo-AccA1 and BPL proteins. The biotinylated holo-AccA1 was removed from the recombinant protein using streptavidin beads. Lanes: 1, recombinant AccA1 purified by Ni²⁺ affinity column chromatography; 2, apo-AccA1 protein (unbound fraction on the streptavidin beads); 3, holo-AccA1 protein (bound fraction on the streptavidin beads); 4, recombinant BPL protein; M, protein marker.

Fig. 5. In vitro biotinylation profile of apo-AccA1 depending on reaction time. The reaction was performed using a mixture of 1.25 μ M of apo-AccA1, 70 nM of BPL, 0.03 mM *D*-biotin, 5.5 mM MgCl₂, 100 mM KCl, 5 μ M dithiothreitol, and 30 mM ATP in Tris-HCl buffer (pH 7.9) at 28°C. C1, negative control without *D*-biotin; C2, negative control without BPL. The protein band intensities shown on the graph are Mean±SD of 3 independent experiments.

The *in vitro* biotinylation of apo-AccA1 with different concentrations of BPL was also examined. An increase of the BPL concentration led to a proportional rise in the amount of biotinylated holo-AccA1 (Fig. 6). Variations in KCl and NaCl concentrations did not alter the enzyme activity (data not shown).

Fig. 6. In vitro biotinylation amount of apo-AccA1 by varying the concentration of BPL. The reaction was performed using a mixture of 1.25 μ M of apo-AccA1, 0.03 mM *D*-biotin, 5.5 mM MgCl₂, 100 mM KCl, 5 μ M dithiothreitol, and 30 mM ATP in Tris-HCl buffer (pH 7.9) at 28°C for 90 min with different concentration of BPL. The protein band intensities shown on the graph are Mean± SD of 3 independent experiments.

The successful *in vivo* and *in vitro* biotinylation of AccA1 suggests that the cloned *accA1* gene locus of *S. toxytricini* encodes a functional α subunit of ACC.

Acknowledgements

This work was supported by Korea Research Fund (grant number KRF-2006-311-E00582) in 2006.

References

- Bierman, M., R. Logan, K. O'Brien, E.T. Seno, R.N. Rao, and B.E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from *Escherichia coli* to *Streptomyces* spp. *Gene* 116, 43-49.
- Chapman-Smith, A., T.W. Morris, J.C. Wallace, and J.E. Cronan, Jr. 1999. Molecular recognition in a post-translational modification of exceptional specificity. J. Biol. Chem. 274, 1449-1457.
- Choi-Rhee, E. and J.E. Cronan. 2003. The biotin carboxylase-biotin carboxyl carrier protein complex of *Escherichia coli* acetyl-CoA carboxylase. J. Biol. Chem. 278, 30806-30812.
- Choi-Rhee, E., H. Schulman, and J.E. Cronan. 2004. Promiscuous protein biotinylation by *Escherichia coli* biotin protein ligase. *Protein Sci.* 13, 3043-3050.
- Cronan, Jr., J.E. and G.L. Waldrop. 2002. Multi-subunit acetyl-CoA carboxylases. Prog. Lipid Res. 41, 407-435.
- Demirev, A.V. Ph. D. thesis. Yeungnam University, Korea.
- Diacovich, L., D.L. Mitchell, H. Pham, G. Gago, M.M. Meglar, C. Khosla, H. Gramajo, and S.C. Tsai. 2004. Crystal structure of the β subunit of acyl-CoA carboxylase: Structure-based engineering of substrate specificity. *Biochemistry* 43, 14027-14036.
- Eisenreich, W., E. Kupfer, P. Stohler, W. Weber, and A. Bacher. 2003. Biosynthetic origin of a branched chain analogue of the lipase inhibitor, lipstatin. J. Med. Chem. 46, 4209-4212.
- Eisenreich, W., E. Kupfer, W. Weber, and A. Bacher. 1997. Tracer studies with crude U-¹³C-lipid mixtures. Biosynthesis of the lipase inhibitor lipstatin. J. Biol. Chem. 272, 867-874.
- Gago, G., D. Kurth, L. Diacovich, S.C. Tsai, and H. Gramajo. 2006. Biochemical and structural characterization of an essential acyl coenzyme A carboxylase from *Mycobacterium tuberculosis. J. Bacteriol.* 188, 477-486.
- Goese, M., W. Eisenreich, E. Kupfer, W. Weber, and A. Bacher. 2000. Biosynthetic origin of hydrogen atoms in the lipase inhibitor lipstatin. J. Biol. Chem. 275, 21192-21196.
- Hochuli, E., E. Kupfer, R. Maurer, W. Meister, Y. Mercadal, and K. Schmidt. 1987. Lipstatin, an inhibitor of pancreatic lipase, produced by *Streptomyces toxytricini*. II. Chemistry and structure elucidation. J. Antibiot. 40, 1086-1091.
- Kiaptapan, P., M. Kobayashi, M. Sakaguchi, H. Ono, M. Yamashita, Y. Kaneko, and Y. Murooka. 2001. Molecular characterization of *Lactobacillus plantarum* genes for β-ketoacyl-acyl carrier protein synthase III (*fabH*) and acetyl coenzyme A carboxylase (*accBCA*), which are essential for fatty acid biosynthesis. *Appl. Environ. Microbiol.* 67, 426-433.
- Kieser, T., M.J. Bibb, M.J. Buttner, K.F. Chater, and D.A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich.
- Kimura, Y., R. Miyake, Y. Tokumasu, and M. Sato. 2000. Molecular cloning and characterization of two genes for the biotin carboxylase and carboxytransferase subunits of acetyl coenzyme A carboxylase in *Myxococcus xanthus*. J. Bacteriol. 182, 5462-5469.
- Lin, T.W., M.M. Melgar, D. Kurth, S.J. Swamidass, J. Purdon, T. Tseng, G. Gago, P. Baldi, H. Gramajo, and S.C. Tsai. 2006. Structure-based inhibitor design of AccD5, an essential acyl-

478 Demirev et al.

CoA carboxylase carboxyltransferase domain of *Mycobacterium* tuberculosis. Proc. Natl. Acad. Sci. USA 103, 3072-3077.

- Portevin, D., C. de Sousa-D'Auria, C. Houssin, C. Grimaldi, M. Chami, M. Daffe, and C. Guilhot. 2004. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. *Proc. Natl. Acad. Sci. USA* 101, 314-319.
- Portevin, D., C. de Sousa-D'Auria, H. Montrozier, C. Houssin, A. Stella, M.A. Laneelle, F. Bardou, C. Guilhot, and M. Daffe. 2005. The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth. J. Biol. Chem. 280, 8862-8874.
- Rodriguez, E., C. Banchio, L. Diacovich, M.J. Bibb, and H. Gramajo. 2001. Role of an essential acyl coenzyme A carboxylases in the primary and secondary metabolism of *Streptomyces coelicolor* A3(2). *Appl. Environ. Microbiol.* 67, 4166-4167.

- Rodriguez, E. and H. Gramajo. 1999. Genetic and biochemical characterization of the α and β components of propionyl-CoA carboxylase complex of *Streptomyces coelicolor* A3(2). *Microbiology* 145, 3109-3119.
- Sambrook, J. and D.W. Russell. 2001. Molecular Cloning: A Laboratory Manual, third ed. CSH Press, NY, USA.
- Schuhr, C.A., W. Eisenreich, M. Goese, P. Stohler, W. Weber, E. Kupfer, and A. Bacher. 2002. Biosynthetic precursors of the lipase inhibitor lipstatin. J. Org. Chem. 67, 2257-2262.
- Weibel, E.K., P. Hadvary, E. Hochuli, E. Kupfer, and H. Lengsfeld. 1987. Lipstatin, an inhibitor of pancreatic lipase, produced by *Streptomyces toxytricini*. I. Producing organism, fermentation, isolation and biological activity. J. Antibiot. 40, 1081-1085.
- Yoo, A., A.V. Demirev, J.S. Lee, S.D. Kim, and D.H. Nam. 2006. Cloning and analysis of a type II polyketide synthase gene cluster from *Streptomyces toxytricini* NRRL 15,443. *J. Microbiol.* 44, 649-654.